Randomized strategies for cardinality robustness in the knapsack problem
نویسندگان
چکیده
منابع مشابه
Randomized Strategies for Cardinality Robustness in the Knapsack Problem
We consider the following zero-sum game related to the knapsack problem. Given an instance of the knapsack problem, Alice chooses a knapsack solution and Bob chooses a cardinality k with knowing Alice’s solution. Then, Alice obtains a payoff equal to the ratio of the profit of the best k items in her solution to that of the best solution of size at most k. For α > 0, a knapsack solution is call...
متن کاملMATHEMATICAL ENGINEERING TECHNICAL REPORTS Computing Knapsack Solutions with Cardinality Robustness
In this paper, we study the robustness over the cardinality variation for the knapsack problem. For the knapsack problem and a positive number α ≤ 1, we say that a feasible solution is α-robust if, for any positive integer k, it includes an α-approximation of the maximum k-knapsack solution, where a k-knapsack solution is a feasible solution that consists of at most k items. In this paper, we s...
متن کاملA Polyhedral Study of the Cardinality Constrained Knapsack Problem
A cardinality constrained knapsack problem is a continuous knapsack problem in which no more than a specified number of nonnegative variables are allowed to be positive. This structure occurs, for example, in areas as finance, location, and scheduling. Traditionally, cardinality constraints are modeled by introducing auxiliary 0-1 variables and additional constraints that relate the continuous ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولFacets for the Cardinality Constrained Quadratic Knapsack Problem and the Quadratic Selective Travelling Salesman Problem
This paper considers the Cardinality Constrained Quadratic Knapsack Problem (QKP) and the Quadratic Selective Travelling Salesman Problem (QSTSP). The QKP is a generalization of the Knapsack Problem and the QSTSP is a generalization of the Travelling Salesman Problem. Thus, both problems are NP hard. The QSTSP and the QKP can be solved using branch-and-cut methods, and in doing so, good bounds ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2017
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2016.12.019